Proving Identities?
prove the following identity:
A)
(1+cosx) / (1-cosx) = (1+secx) / (secx-1)
B)
(sinx+tanx) / (cosx+1) = tanx
1 Answer
Relevance
- gudspelingLv 71 decade agoFavorite Answer
LHS
= (1 + cos(x)) / (1 - cos(x))
= ((1 + cos(x))/cos(x)) / ((1-cos(x))/cos(x))
= (sec(x) + 1) / (sec(x) - 1)
= (1 + sec(x)) / (sec(x) - 1)
= RHS
LHS
= (sin(x) + tan(x)) / (cos(x) + 1)
= (sin(x) + sin(x)/cos(x)) / (cos(x) + 1)
= sin(x)(1 + 1/cos(x)) / (cos(x) + 1)
= sin(x)cos(x)(1 + 1/cos(x)) / (cos(x)(cos(x) + 1))
= sin(x)(cos(x) + 1) / (cos(x)(cos(x) + 1))
= sin(x) / cos(x)
= tan(x)
= RHS
Still have questions? Get your answers by asking now.