[tan(45+x) - tan(45-x)] / [tan(45+x) + tan(45-x)] = 2sinxcosx?
[tan(45+x) - tan(45-x)] / [tan(45+x) + tan(45-x)] = 2sinxcosx
3 Answers
- HemantLv 71 decade agoFavorite Answer
Method - 1
......................
On LHS, writing tan as ( sin / cos ),
and taking ( cos. cos ) as LCM,
...Numerator
= [ sin(45+x). cos(45-x) - cos(45+x). sin(45-x) ] / [ cos(45+x). cos(45-x) ]
= sin [ (45+x) - (45-x) ] / [ ... ... ]
= sin 2x / [ ... ... ]
= 2 sin x. cos x / [ ... ... ] ................ (1)
Similarly,
... Denominator
= [ sin(45+x). cos(45-x) + cos(45+x). sin(45-x) ] / [ ... ... ]
= sin [ (45+x) + (45-x) ] / [ ... ... ]
= sin 90 / [ ... ... ]
= 1 / [ ... ... ] ........................ (2)
Dividing (1) by (2),
LHS = 2 sin x. cos x = RHS ............ Q.E.D.
..........................................................................................
Method - 2
....................................
Let t = tan x. Then,
tan (45°+x) = (1+t) / (1-t) and tan (45°-x) = (1-t) / (1+t).
Hence, on the LHS
... Numerator
= [ (1+t) / (1-t) ] - [ (1-t) / (1+t) ]
= [ (1+t)² - (1-t)² ] / (1-t²)
= 4t / (1-t²) .................................... (1)
Similarly, we can show that
Den. = 2(1+t²) / (1-t²) ......................(2)
Hence, from (1) and (2),
LHS = 4t / 2(1+t²) = 2. tan x / (1+tan² x) = 2.tan x / ( sec² x )
. . . .= 2( sin x / cos x ). ( cos² x ) = 2. sin x. cos x
. . . .= RHS
Hence, the result.
__________________________________________
Happy To Help !
__________________________________________
- 1 decade ago
i tried, i really did and im supposed to be good at this.. so r u sure the question is right?? i know u definitely multiply the brackets lol.. p.s i don't understand the other guy's answer..
- 1 decade ago
Tangent=sine/cosine, tan(90+x)=1/tan(x) and sine(x)=cosine(45-x) and cosine(x)=sine(45-x). From this we get
(cos(45-x)/sin(45-x)-sin(45-x)/cos(45-x))/(cos(45-x)/sin(45-x)+sin(45-x)/cos(45-x))
then
(sin(x)/cos(x)-sin(x)/cos(x))/(sin(x)/cos(x)+cos(x)/sin(x))
=2*sin(x)*cos(x)