Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Anonymous
Anonymous asked in Science & MathematicsMathematics · 9 years ago

# Prove that the LHS equals the RHS: (sinx + sin2x) / (1 + cosx + cos2x) = tanx?

Relevance
• Eugene
Lv 7
9 years ago

sin x + sin 2x = sin x + 2 sin x cos x = sin x (1 + 2 cos x)

1 + cos x + cos 2x = 1 + cos x + (2cos^2 x - 1) = cos x + 2 cos^2 x

= cos x (1 + 2 cos x)

∴ (sin x + sin 2x)/(1 + cos x + cos 2x)

= sin x(1 + 2 cos x)/[cos x(1 + 2 cos x)]

= sin x/cos x = tan x.

Note that the double-angle identities for sine and cosine were used:

sin 2x = 2 sin x cos x

cos 2x = 2 cos^2 x - 1.

• moe
Lv 7
9 years ago

(sinx+sin2x) / (1+cosx + cos2x) = tanx

cosx(sinx+sin2x) = sinx(1+cosx+cos2x)

cosx(sinx+2sinxcosx) = sinx(1+cosx +(2cos^2x-1)

sinxcosx(1+2cosx) = sinx(cosx+2cos^2x) = sinxcosx(1+2cosx)

LHS=RHS

• 9 years ago

(sin(x) + sin(2x))/(1 + cos(x) + cos(2x)) = tan(x)

Simplifying LHS:

(sin(x))(1 + 2*cos(x))/(1 + cos(x) + cos²(x) - sin²(x)) = (sin(x))(1 + 2*cos(x))/(2*cos²(x) + cos(x))

= sin(x)/cos(x) = tan(x)