Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Anonymous
Anonymous asked in Science & MathematicsMathematics · 9 years ago

Prove that the LHS equals the RHS: (sinx + sin2x) / (1 + cosx + cos2x) = tanx?

3 Answers

Relevance
  • Eugene
    Lv 7
    9 years ago
    Favorite Answer

    sin x + sin 2x = sin x + 2 sin x cos x = sin x (1 + 2 cos x)

    1 + cos x + cos 2x = 1 + cos x + (2cos^2 x - 1) = cos x + 2 cos^2 x

    = cos x (1 + 2 cos x)

    ∴ (sin x + sin 2x)/(1 + cos x + cos 2x)

    = sin x(1 + 2 cos x)/[cos x(1 + 2 cos x)]

    = sin x/cos x = tan x.

    Note that the double-angle identities for sine and cosine were used:

    sin 2x = 2 sin x cos x

    cos 2x = 2 cos^2 x - 1.

  • moe
    Lv 7
    9 years ago

    (sinx+sin2x) / (1+cosx + cos2x) = tanx

    cosx(sinx+sin2x) = sinx(1+cosx+cos2x)

    cosx(sinx+2sinxcosx) = sinx(1+cosx +(2cos^2x-1)

    sinxcosx(1+2cosx) = sinx(cosx+2cos^2x) = sinxcosx(1+2cosx)

    LHS=RHS

  • 9 years ago

    (sin(x) + sin(2x))/(1 + cos(x) + cos(2x)) = tan(x)

    Simplifying LHS:

    (sin(x))(1 + 2*cos(x))/(1 + cos(x) + cos²(x) - sin²(x)) = (sin(x))(1 + 2*cos(x))/(2*cos²(x) + cos(x))

    = sin(x)/cos(x) = tan(x)

Still have questions? Get your answers by asking now.