Anonymous
Anonymous asked in Science & MathematicsMathematics · 8 years ago

Prove that the LHS equals the RHS: (sinx + sin2x) / (1 + cosx + cos2x) = tanx?

3 Answers

Relevance
  • Eugene
    Lv 7
    8 years ago
    Favorite Answer

    sin x + sin 2x = sin x + 2 sin x cos x = sin x (1 + 2 cos x)

    1 + cos x + cos 2x = 1 + cos x + (2cos^2 x - 1) = cos x + 2 cos^2 x

    = cos x (1 + 2 cos x)

    ∴ (sin x + sin 2x)/(1 + cos x + cos 2x)

    = sin x(1 + 2 cos x)/[cos x(1 + 2 cos x)]

    = sin x/cos x = tan x.

    Note that the double-angle identities for sine and cosine were used:

    sin 2x = 2 sin x cos x

    cos 2x = 2 cos^2 x - 1.

  • moe
    Lv 7
    8 years ago

    (sinx+sin2x) / (1+cosx + cos2x) = tanx

    cosx(sinx+sin2x) = sinx(1+cosx+cos2x)

    cosx(sinx+2sinxcosx) = sinx(1+cosx +(2cos^2x-1)

    sinxcosx(1+2cosx) = sinx(cosx+2cos^2x) = sinxcosx(1+2cosx)

    LHS=RHS

  • 8 years ago

    (sin(x) + sin(2x))/(1 + cos(x) + cos(2x)) = tan(x)

    Simplifying LHS:

    (sin(x))(1 + 2*cos(x))/(1 + cos(x) + cos²(x) - sin²(x)) = (sin(x))(1 + 2*cos(x))/(2*cos²(x) + cos(x))

    = sin(x)/cos(x) = tan(x)

Still have questions? Get your answers by asking now.