Simplify the LHS of the identity?
(tan(x)-sin(x)) / (tan(x)sin(x)) = (1-cos(x)) / sin(x))
Simplify the LHS of the equation, please provide all steps THANK YOU! :)
3 Answers
Relevance
- Richie AlfredLv 77 years ago
L.H.S = tan(x)-sin(x)) / (tan(x)sin(x))
= [(sinx/cosx) - sinx] / [(sinx/cosx)sinx]
= [sinx(1 - cosx)/cosx] / [sin²x/cosx]
= { [sinx(1 - cosx)] / [sin²x] } [cosx/cosx]
= {(1 - cosx) / [sinx]} (1) = (1 - cosx) / sinx = RHS
hope this helps
- M3Lv 77 years ago
(tanX - sinX) / (tanX.sinX) ...... divide top & bottom by tanX
= (1 - sinX / tanX) / tanX ........ simplify sinX / tan X
= (1 - cosX ) / sinX
QED
Still have questions? Get your answers by asking now.