# Simplify the LHS of the identity?

(tan(x)-sin(x)) / (tan(x)sin(x)) = (1-cos(x)) / sin(x))

Simplify the LHS of the equation, please provide all steps THANK YOU! :)

### 3 Answers

Relevance

- Richie AlfredLv 76 years ago
L.H.S = tan(x)-sin(x)) / (tan(x)sin(x))

= [(sinx/cosx) - sinx] / [(sinx/cosx)sinx]

= [sinx(1 - cosx)/cosx] / [sin²x/cosx]

= { [sinx(1 - cosx)] / [sin²x] } [cosx/cosx]

= {(1 - cosx) / [sinx]} (1) = (1 - cosx) / sinx = RHS

hope this helps

- Login to reply the answers

- M3Lv 76 years ago
(tanX - sinX) / (tanX.sinX) ...... divide top & bottom by tanX

= (1 - sinX / tanX) / tanX ........ simplify sinX / tan X

= (1 - cosX ) / sinX

QED

- Login to reply the answers

Still have questions? Get your answers by asking now.